Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator.

Identifieur interne : 000150 ( Main/Exploration ); précédent : 000149; suivant : 000151

Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator.

Auteurs : Tynan Young [États-Unis] ; Dimitri Niks [États-Unis] ; Sheron Hakopian [États-Unis] ; Timothy K. Tam [États-Unis] ; Xuejun Yu [États-Unis] ; Russ Hille [États-Unis] ; Gregor M. Blaha [États-Unis]

Source :

RBID : pubmed:32249211

Abstract

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH-, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.

DOI: 10.1074/jbc.RA120.013264
PubMed: 32249211
PubMed Central: PMC7212643


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from
<i>Cupriavidus necator</i>
.</title>
<author>
<name sortKey="Young, Tynan" sort="Young, Tynan" uniqKey="Young T" first="Tynan" last="Young">Tynan Young</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Niks, Dimitri" sort="Niks, Dimitri" uniqKey="Niks D" first="Dimitri" last="Niks">Dimitri Niks</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hakopian, Sheron" sort="Hakopian, Sheron" uniqKey="Hakopian S" first="Sheron" last="Hakopian">Sheron Hakopian</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tam, Timothy K" sort="Tam, Timothy K" uniqKey="Tam T" first="Timothy K" last="Tam">Timothy K. Tam</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Xuejun" sort="Yu, Xuejun" uniqKey="Yu X" first="Xuejun" last="Yu">Xuejun Yu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hille, Russ" sort="Hille, Russ" uniqKey="Hille R" first="Russ" last="Hille">Russ Hille</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521 russ.hille@ucr.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blaha, Gregor M" sort="Blaha, Gregor M" uniqKey="Blaha G" first="Gregor M" last="Blaha">Gregor M. Blaha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521 gregor.blaha@ucr.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32249211</idno>
<idno type="pmid">32249211</idno>
<idno type="doi">10.1074/jbc.RA120.013264</idno>
<idno type="pmc">PMC7212643</idno>
<idno type="wicri:Area/Main/Corpus">000114</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000114</idno>
<idno type="wicri:Area/Main/Curation">000114</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000114</idno>
<idno type="wicri:Area/Main/Exploration">000114</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from
<i>Cupriavidus necator</i>
.</title>
<author>
<name sortKey="Young, Tynan" sort="Young, Tynan" uniqKey="Young T" first="Tynan" last="Young">Tynan Young</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Niks, Dimitri" sort="Niks, Dimitri" uniqKey="Niks D" first="Dimitri" last="Niks">Dimitri Niks</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hakopian, Sheron" sort="Hakopian, Sheron" uniqKey="Hakopian S" first="Sheron" last="Hakopian">Sheron Hakopian</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tam, Timothy K" sort="Tam, Timothy K" uniqKey="Tam T" first="Timothy K" last="Tam">Timothy K. Tam</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Xuejun" sort="Yu, Xuejun" uniqKey="Yu X" first="Xuejun" last="Yu">Xuejun Yu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Biochemistry, University of California, Riverside</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hille, Russ" sort="Hille, Russ" uniqKey="Hille R" first="Russ" last="Hille">Russ Hille</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521 russ.hille@ucr.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blaha, Gregor M" sort="Blaha, Gregor M" uniqKey="Blaha G" first="Gregor M" last="Blaha">Gregor M. Blaha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of California, Riverside, California 92521 gregor.blaha@ucr.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of California, Riverside</wicri:regionArea>
<wicri:noRegion>Riverside</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD
<sup>+</sup>
-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium
<i>Cupriavidus necator</i>
H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe
<sub>4</sub>
S
<sub>4</sub>
in FdsB and Fe
<sub>2</sub>
S
<sub>2</sub>
in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH
<sup></sup>
, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH
<sup>-</sup>
, initially formed via NADH-mediated reduction, to the Fe
<sub>2</sub>
S
<sub>2</sub>
cluster. This Fe
<sub>2</sub>
S
<sub>2</sub>
cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the
<i>re</i>
-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD
<sup>+</sup>
binding in proper NADH dehydrogenases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32249211</PMID>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>295</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from
<i>Cupriavidus necator</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>6570-6585</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA120.013264</ELocationID>
<Abstract>
<AbstractText>Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD
<sup>+</sup>
-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium
<i>Cupriavidus necator</i>
H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe
<sub>4</sub>
S
<sub>4</sub>
in FdsB and Fe
<sub>2</sub>
S
<sub>2</sub>
in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH
<sup></sup>
, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH
<sup>-</sup>
, initially formed via NADH-mediated reduction, to the Fe
<sub>2</sub>
S
<sub>2</sub>
cluster. This Fe
<sub>2</sub>
S
<sub>2</sub>
cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the
<i>re</i>
-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD
<sup>+</sup>
binding in proper NADH dehydrogenases.</AbstractText>
<CopyrightInformation>© 2020 Young et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>Tynan</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niks</LastName>
<ForeName>Dimitri</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hakopian</LastName>
<ForeName>Sheron</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tam</LastName>
<ForeName>Timothy K</ForeName>
<Initials>TK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Xuejun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of California, Riverside, California 92521.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hille</LastName>
<ForeName>Russ</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of California, Riverside, California 92521 russ.hille@ucr.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blaha</LastName>
<ForeName>Gregor M</ForeName>
<Initials>GM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of California, Riverside, California 92521 gregor.blaha@ucr.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>6HLI</AccessionNumber>
<AccessionNumber>6HL2</AccessionNumber>
<AccessionNumber>6HL3</AccessionNumber>
<AccessionNumber>5XFA</AccessionNumber>
<AccessionNumber>5XF9</AccessionNumber>
<AccessionNumber>2FUG</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">FdsABG</Keyword>
<Keyword MajorTopicYN="N">carbon assimilation</Keyword>
<Keyword MajorTopicYN="N">electron transfer</Keyword>
<Keyword MajorTopicYN="N">enzyme kinetics</Keyword>
<Keyword MajorTopicYN="N">enzyme structure</Keyword>
<Keyword MajorTopicYN="N">flavin mononucleotide (FMN)</Keyword>
<Keyword MajorTopicYN="N">formate dehydrogenase</Keyword>
<Keyword MajorTopicYN="N">nicotinamide adenine dinucleotide (NADH)</Keyword>
<Keyword MajorTopicYN="N">protein crystallization</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32249211</ArticleId>
<ArticleId IdType="pii">RA120.013264</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA120.013264</ArticleId>
<ArticleId IdType="pmc">PMC7212643</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem Hoppe Seyler. 1995 Sep;376(9):561-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8561915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2019 Apr 9;58(14):1861-1868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30839197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 6;279(6):4127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14625276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Aug 26;47(34):8885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18651753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2009;16(1-2):38-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jan 5;268(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8380164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Aug;175(15):4719-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8335630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 2006 Jan;178(1):42-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Jun 11;10(1):2551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31186428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Mar 10;311(5766):1430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2018;613:277-295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30509470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2777</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24231803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 May 27;465(7297):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20505720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Jul 25;249(14):4363-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4367215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Oct;24(10):1257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Sep 1;200(2):463-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1832379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Jan 15;291(3):1162-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26553877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Sep 1;357(6354):928-932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28860386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2014 Apr 9;114(7):3963-4038</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24467397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Top Curr Chem. 1983;108:109-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6298972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 9;273(41):26349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9756865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1979 Feb;192(2):559-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">35108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Feb 14;9:194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29491854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1991 Jul 29;286(1-2):121-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1907568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 1996 Nov 7;96(7):2757-2816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11848841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1981 Apr 15;208(1):69-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6266343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1997 Aug 21;187(4):529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9299297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Oct 13;292(41):16872-16879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28784661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e25939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22016788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29788355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Resour Announc. 2019 Sep 12;8(37):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31515345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1995 Feb;8(2):127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7630882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2018 Apr 30;14(4):e1006104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29708963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 29;309(5735):771-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 8;271(10):5907-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8621464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2018 Oct 25;399(11):1249-1264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30243012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Dec;280(23):6083-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24034888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Struct Biol. 2019 Jan 1;75(Pt 1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30644841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Feb 28;275(5304):1305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9036855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Struct Biol. 2018 Feb 1;74(Pt 2):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29533234</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Young, Tynan" sort="Young, Tynan" uniqKey="Young T" first="Tynan" last="Young">Tynan Young</name>
</region>
<name sortKey="Blaha, Gregor M" sort="Blaha, Gregor M" uniqKey="Blaha G" first="Gregor M" last="Blaha">Gregor M. Blaha</name>
<name sortKey="Hakopian, Sheron" sort="Hakopian, Sheron" uniqKey="Hakopian S" first="Sheron" last="Hakopian">Sheron Hakopian</name>
<name sortKey="Hille, Russ" sort="Hille, Russ" uniqKey="Hille R" first="Russ" last="Hille">Russ Hille</name>
<name sortKey="Niks, Dimitri" sort="Niks, Dimitri" uniqKey="Niks D" first="Dimitri" last="Niks">Dimitri Niks</name>
<name sortKey="Tam, Timothy K" sort="Tam, Timothy K" uniqKey="Tam T" first="Timothy K" last="Tam">Timothy K. Tam</name>
<name sortKey="Yu, Xuejun" sort="Yu, Xuejun" uniqKey="Yu X" first="Xuejun" last="Yu">Xuejun Yu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000150 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000150 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32249211
   |texte=   Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32249211" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020